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Abstract

A general approach to the construction of conservation law s for mechanical systems with unilateral holonomic constraints

by finding comesponding integrating factors is presented. The definition of integrating factors for the Routh equations of motion of the sys

tems is given, and the necessary conditions for the existence of conserved quantities of the unilateral holonomic constraint systemsare stud-

ied in detail. The conservation theorem and its inverse for the systems are established, and an example is given to illustrate the application

of the results.
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It is very important to find out the conservation
laws in a field like mathematics, mechanics, physics
or any others. Recently, Meil" summarized three
methods, i.e. the method of Newtonian mechanics,
the method of Lagrange mechanics and the symmetry
methods in arriving at the conservation laws and
their developments. According to the properties of
forces, Newtonian mechanics established the conser-
vation law of momentum, the conservation law of
moment of momentum and the conservation law of
mechanical energy' "' ; Lagrange mechanics found out
the conservation laws directly from the expression of
dynamical functions and kinematical relations! 1’2];
and the theory of symmetry found out the conserva-
tion laws from the intrinsic relations of symmetry and
conservation laws " 371

In 1984, Djukic''? presented an approach to the
construction of conservation laws for nonconservative
dynamical systems by finding the corresponding inte-
grating factors of the equations of motion. The ap-
proach is an attempt to construct a conservation law
in a way similar to the one used in obtaining the ener-
gy integral for conservative systems, namely that of
multiplying the equations of motion by appropriate in-
tegrating factors. This is a development of the
method of Lagrange mechanics. Qiao et al. applied
the approach to the Raitzin’ s canonical equations of
motion of nonconservative systems '9, the canonical
equations of motion of nonholonomic relativistic sys-

unilateral holonomic constraint, integrating factor, conservation theorem Killing equation.

1 . I .
tems ', the generalized Hamiltonian canonical equa-

tions of motion of dynamical systems in generalized

[18

classical mechanics' *, the generalized Hamiltonian

canonical equations of motion of variable mass non-
" and so on. But all
these studies are limited to the canonical equations of

holonomic dynamical systems

motion of dynamical systems with bilateral con-
straints.

This paper further studies the integrating factors
and the construction of conservation laws for mechan-
ical systems with unilateral holonomic constraints.
The integrating factors for the Routh equations of
motion of the systems are defined. According to the
definition, the conserved quantities of the systems
with unilateral holonomic constraints are constructeds
and the conservation theorem and its inverse for the
systems are established .

1 Differential equations of motion of the
systems and their integrating factors

Suppose that the configuration of a system is de-
termined by n generalized coordinates gs (s= 1, -+
n), and the motion of the system is subject to g ideal
unilateral holonomic constraints

.9 =0 B=1, - 2. (D
If the sign of inequality in constraints (1) holds
strictly, then the system is free from the constraints;
and if constraints (1) take the sign of equality. the
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system then is in the constraints. If the system is in
the constraints,
compatible with these constraints, and we have the

the virtual displacements must be

supplementary conditions

/.
alsé?;s—o

(B: 17 ) g)- (2)

Then the differential equations of motion of the sys-
tem can be expressed in the form!'!
(5) (5) % 9
4oL L plty £ (s =1, = n),
3

where L is the Lagrangian function of the system,
n

O, the generalized nonpotential forces, A8 the con-
straint multipliers, and we have

=0,  fi=0, Nfp=0 (PB=1, -y g). 4
Note that Eq. (3) is not closed, since the discontinu-
ous velocity changes are produced by the existence of
the unilateral constraints (1). The connecting condi-
tions along the constraint hypersurface must be taken
into consideration if to make Eq. (3) closed, for ex-
ample, whether the constraint hy persurface is abso-
lutely smooth and the collision is completely elastic,
and etc.

If the system is in the constraints, that is con-
straints (1) take the sign of equality, we can express
% as the functions of #, ¢, ¢ and Eq. (3) can be

w ritten as

&Av([yqyél)zku%. (5
a=1 N

If the system is free from the constraints, that
is, the sign of inequality in constraints (1) holds

strictly, then Eq. (3) becomes
da _a_
a 3, Yl 0. 6)

Now we present the idea of integrating factors
for the equations of motion.

Definition 1. If there exist a set of functions
&= & (1, g ¢)s the following identity is satisfied:
AL _L_ol—Alg
t a]s s :

_d| e QL
oﬁ{aéff {a%sqé L]T G}

doL oL
+ dz a/l”s a?s QS A‘J

b

o

=0, @)

fﬁ> 09
®)

where T, G and ! are functions of #. ¢. ¢, then,
functions & = & (¢, ¢, ¢) are called integrating fac-

tors for the differential equations of motion (3) of
systems with unilateral holonomic constraints.

2 Theorems of conservation of the systems

Combining Eq. (3) with Eqs. (7) and (8), we
hav

dl e | L, |
1 agfs {a}sqS L}‘E G}

d o o "
= aaggé[\%9 fB:()a
Q)
dj e | Ly gl
dt{a&fs O }T G}
da a g
[ !J'S dr a%s %s Qs}y fB> 09
(10

and the following theorem is obvious:

Theorem 1. If the functions & are integrating

AL -
1= =& —| = qs L}r—G an
7

is a conserved quantity (first integral) for systems
(1) and (3) with unilateral constraints.

factors for Eq. (3), the[n the following quantity

N

For agiven system (1) (3) with unilateral holo-
nomic constraints, if the functions S are integrating
factors for Eq. (3), then the necessary conditions
(9) and (10) must be satisfied for each set of func-
tions & T G and . Using Eq. (3), conditions
(9) and (10) can be written as

aL

a]vgs_’_ (Q:,+ As)(gv - és'f)

oL, o i°fL ..
+aéfs+ar {a]»s% ]T—G

+us(d% %% 0.~ AAW =0,
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=0, 12)

a moe oo e o
a]fs+ 0, (§— ¢,0+ a}fﬁ 5

_{iéSL};_ é

d o aL "
+ K Eg s Qs} =0 fi>0.
a3
Obviously, if the set of functions & T Gand
satisfy the necessary conditions (12) and (13), then
the set of functions reduces the right hand side of
(11) into a constant along the trajectory of the given
system (1) (3) with unilateral holonomic con-
straints. Therefore, we obtain the following theo-
rem.

Theorem 2. For every nonsingular set of func-
tions &, T G and ¥ which satisfies the necessary
conditions (12) and (13), there exists a conserved
quantity (11) of the given system (1) (3) with uni-

lateral holonoime constraints.

(12) and (13) or by an ad
hoc approach, the set of functions €&, T G and &

By integrating Eqs.

can be obtained. For any particular solution or func-
of Eqs. (12) and (13), which does

not contain any integration constants

tional solution! '3

a conserved
quantity (first integral) of the system with unilateral
holonomic wnstraints can be obtained by Theorem 2.

The key to seek for the conserved quantity of the
system by Theorems 1 and 2 lies in how to find out
the set of functions &= & (¢, q 21), = (¢, ¢q, Dq)
and G = Gty q. q) . (12) and
(13) and splitting it into firstorder partial differen-

tial equations for &  and G. which can be called
the generalized Killing equations, we can find out

Expanding Egs.

these functions by solving the generalized Killing e-
quations. Since the functions & tTand G are inde-

pendent of q9 , we can let the terms including qY and

the other terms ex cluding 25 equal to zero separately,
hence, Egs. (12) and (13) can be split into a system
of (n+ 1) linear partial differential equations, which
take the form as follows:

i " & Ef
a,fS* 0+ M (&— g+ = [ 5 a}/{q%

Ly gl = laL GG
{aéfs L”a aﬂ’% a

JL L a4 B
{a;sa+aqgaqk a @ A%O’

=0 (14)
o & &
@€+Q[Eqs]+aq{a+aqqk}
a- o, o ad__ G
{a}sqs L{ +8qq4+a Ty
_ &G 82L 82L 7aL7 (i
>0 (15
ii—{go}sL o EGJr# oL =0
a?s@k aIS a]k @k a]alk
k=1, - n. (16)

Eqs. (14) and (16) or Eqs. (15) and (16) are (n+
1) equations with (2n+2) unknown functions &,
T, G and s, which can be called generalized Killing
equations. Because the number of the equations is
smaller than the number of unknown functions, the
solutions of the equations are not unique, and we can
obtain different conserved quantities by the appropri-

ate selection of the functions ES, T, G and .

When =0 (s= 1,
Killing equations above are ofzthe same form as the
', which are obtained
by the Noetherian theory, and there, function G is a

-5 n), the generalized
generalized Killing equations[1

gauge variant function and a one-parameter infinitesi-
mal transformation of time and generalized coordi-
nates is given by
t = t+e(t,q q)
g, ) =g+ &g @) UAD
The form of
the conserved quantity in Noetherian theory is also

where € is an infinitesimal parameter.

the same as that of the conserved quantity (7).
Therefore, the integrating factors & and the functions
T, G, which are of the fundamental importance in
the present approach, possess a very clear meaning in
the Noetherian theory .

3 Inverse theorem

Assume that the given unilateral constraint sys-
tem (1) (3) has a first integral

1= 1(,yq, aq): const, (18)
therefore, the integral (18) and the corresponding in-
tegrating factors & and the functions T, G must be
compatible with the conditions (12) and (13). Cal-

culating i from Eq. (11), and substituting this

)
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result into Eq. (16), we obtain
&=y Lt gort s (5= 1. - n) (19)
Y

where fighi= . Let the integral (18) equal to the
conserved quantity, (11), we have

=5 —| -9 Llt—Gc=1. Q0
&, [azs ]

From (0), we obtain
aL

d
= — hs B +l‘ts —
G ay{ ka“ }—i—Lr I. QD

)
Hence, we can obtain the following theorem:

Theorem 3. If the unilateral constraint system
(1) (3) has a first integral (18), then the integrat-
ing factors & and functions ©, G, corresponding

to the integral are determined by Egs. (19) and

Q.

The algebraic equations (19) and (21) are (n+
1) relations between (274 2) functions, and obvi-
ously, the functions €& © G, !4 are not unique.
For example, corresponding to the same conserved
quantity, we can obtain different integrating factors

by the appropriate selection of the functions Es, T, G
and Y.

4 An example

Suppose that a material point with mass m
moves in a vertical plane not below a smooth curve
y=2x, and is subject to non-potential forces Q;,:
mxs QZZ - my . Let us try to study its conserva-
tion law .

Firstly, we study the direct problem to obtain
the conserved quantity of the system. We may take
q1=x, gq2=1y as the generalized coordinates. The
Lagrangian function of the system and the unilateral
constraint are

L= %m (EI%Jr q%) — mgq2,

1= ¢—q =0, 22)
and the non-potential forces are
" ° " °
0= mqi, Q.= mq. 23)

The differential equations of motion of the sys-
tem can be expressed as follows:

gi= (—g+qgi—q2)/2
= (gtqg— @)V fi=0 Qb

g1=qs =g q» fi>0. (25
In this problem, the hypothesis of smoothness gives a
connecting condition of the system, which depicts the
properties within the tangent plane of the constraint
hypersurface. Since the property along the nommal
plane of the constraint hy persurface is still unknow n,
the motion of the system can not be determined com-
pletely.

The generalized Killing equations (14) ~ (16)

give

- mggz+ %(_ mg"‘ mc}1— qu)(EI— Bqlf)

—|—L(mg+ mg1— mg2) (&,— ¢o0)

2
+ mgq §l+§1m+§;qz

— (P2t mng)[%t+ %5. + %qu]

_ G G G

a gl p®
—%(— mg+ mqi— mq2)th
*%(*mgﬁ—mél*mqnz)ﬂzzoy f1=0;

(26)
_mg82+ mél(gl—élf)—méz(gz_ 2]21')
+ mq, ElJr allqﬁr g;qz
& H.H

+ mq» EZ—F aqul+ Ey Q@
— (m(q%+q§)/2+ mng)[g+ %QIJF Y q2}

oG

_ G G G-
a @lql a]z(,IZ

— mg1t + Gmg+ mg) = 0,

£ . 3 o o

mqi gll—F maq> g?* (m (g + ¢/ 2+ mgg) %

—%Gerul— 0; 28)

1

% - & ) or
—+ —— (m (g| 1+ ¢)/2+ ) =
a]z mq> ap m \q q2 mgqz 812

B 29)

>
Eqs. (26) ~(29) have a solution of
=0 &=1 &=1,
G= mq1— mq>— mgt, " =0,

fi>0; QD

mdi

Py = 0.
30)
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In correspondence with the set of functions (30), and
according to Theorems 1 and 2, the system has a con-
served quantity as follows:
I= mq + mg2— mq\+ mg,+ mgt = const.
GD

Secondly, we study the inverse problem, in
which integrating factors & and functions T, G, !
can be obtained from a given integral. Suppose the
system has a first integral (31), then Eqs. (19) and
(21) give respectively
S =1+qittm, S=1+qgtt o,
32)
G=mq A+ L)+ mg2(1+ )+ Lt
- m(D]1* m(}fr mqi — mqx — mgt. 33)
There are 6 unknown functions in Egs. (32) and
(33), therefore, the solutions are not unique. We
can get the remaining 3 functions by the appropriate
selection of 3 functions among the unknown func-
tions. For example, we select

t=0 H*=—1 H=0 G4
then we have
§=0, &=1, G= mq+ mq— mg— mgt.
35)
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